Machine Learning on Google Cloud

Seminar / Firmentraining

Zielgruppe

  • Angehende Datenwissenschaftler und Ingenieure für maschinelles Lernen.
  • Lernende, die ML mit Vertex AI AutoML, BQML, Feature Store, Workbench, Dataflow, Vizier für Hyperparameter-Tuning, TensorFlow/Keras kennenlernen möchten.

Voraussetzungen

  • Gewisse Vertrautheit mit grundlegenden Konzepten des maschinellen Lernens.
  • Grundkenntnisse in einer Skriptsprache - Python bevorzugt.

Inhalte

  • Mit Vertex AI AutoML können Sie ein maschinelles Lernmodell erstellen, trainieren und bereitstellen, ohne eine einzige Zeile Code schreiben zu müssen.
  • Verstehen Sie, wann Sie AutoML und Big Query ML verwenden sollten.
  • Erstellen Sie von Vertex AI verwaltete Datensätze.
  • Features zu einem Feature Store hinzufügen.
  • Beschreiben Sie Analytics Hub, Dataplex, Data Catalog.
  • Beschreiben Sie das Hyperparameter-Tuning mit Vertex Vizier und wie es zur Verbesserung der Modellleistung eingesetzt werden kann.
  • Erstellen Sie ein benutzerverwaltetes Vertex AI Workbench-Notizbuch, erstellen Sie einen benutzerdefinierten Trainingsauftrag und stellen Sie ihn dann mithilfe eines Docker-Containers bereit.
  • Beschreiben Sie Batch- und Online-Vorhersagen und die Modellüberwachung.
  • Beschreiben Sie, wie Sie die Datenqualität verbessern können.
  • Führen Sie eine explorative Datenanalyse durch.
  • Erstellen und trainieren Sie überwachte Lernmodelle.
  • Optimieren und bewerten Sie Modelle mit Hilfe von Verlustfunktionen und Leistungsmetriken.
  • Erstellen Sie wiederholbare und skalierbare Trainings-, Evaluierungs- und Testdatensätze.
  • Implementierung von ML-Modellen mit TensorFlow/Keras.
  • Beschreiben Sie, wie man Merkmale darstellt und umwandelt.
  • Verstehen Sie die Vorteile der Anwendung von Feature Engineering
  • Erklären Sie Vertex AI Pipelines